419 research outputs found

    Overconstrained estimates of neutrinoless double beta decay within the QRPA

    Get PDF
    Estimates of nuclear matrix elements for neutrinoless double beta decay (0nu2beta) based on the quasiparticle random phase approximations (QRPA) are affected by theoretical uncertainties, which can be substantially reduced by fixing the unknown strength parameter g_pp of the residual particle-particle interaction through one experimental constraint - most notably through the two-neutrino double beta decay (2nu2beta) lifetime. However, it has been noted that the g_pp adjustment via 2\nu2\beta data may bring QRPA models in disagreement with independent data on electron capture (EC) and single beta decay (beta^-) lifetimes. Actually, in two nuclei of interest for 0nu2beta decay (Mo-100 and Cd-116), for which all such data are available, we show that the disagreement vanishes, provided that the axial vector coupling g_A is treated as a free parameter, with allowance for g_A<1 (``strong quenching''). Three independent lifetime data (2nu2beta, EC, \beta^-) are then accurately reproduced by means of two free parameters (g_pp, g_A), resulting in an overconstrained parameter space. In addition, the sign of the 2nu2beta matrix element M^2nu is unambiguously selected (M^2nu>0) by the combination of all data. We discuss quantitatively, in each of the two nuclei, these phenomenological constraints and their consequences for QRPA estimates of the 0nu2beta matrix elements and of their uncertainties.Comment: Revised version (27 pages, including 10 figures), focussed on Mo-100 and Cd-116. To appear in J. Phys. G: Nucl. Phys. (2008

    Low-Background In-Trap Decay Spectroscopy with TITAN at TRIUMF

    Get PDF
    An in-trap decay spectroscopy setup has been developed and constructed for use with the TITAN facility at TRIUMF. The goal of this device is to observe weak electron-capture (EC) branching ratios for the odd-odd intermediate nuclei in the ββ\beta\beta decay process. This apparatus consists of an up-to 6 Tesla, open-access spectroscopy ion-trap, surrounded radially by up to 7 planar Si(Li) detectors which are separated from the trap by thin Be windows. This configuration provides a significant increase in sensitivity for the detection of low-energy photons by providing backing-free ion storage and eliminating charged-particle-induced backgrounds. An intense electron beam is also employed to increase the charge-states of the trapped ions, thus providing storage times on the order of minutes, allowing for decay-spectroscopy measurements. The technique of multiple ion-bunch stacking was also recently demonstrated, which further extends the measurement possibilities of this apparatus. The current status of the facility and initial results from a 116^{116}In measurement are presented.Comment: Proceedings for the 2nd International Conference on Advances in Radioactive Isotope Science (ARIS2014

    Penning traps as a versatile tool for precise experiments in fundamental physics

    Full text link
    This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. This together with the information on the unitarity of the quark-mixing matrix, derived from the trap-measurements of atomic masses, serves for assessment of the Standard Model of the physics world. Direct mass measurements of nuclides targeted to some advanced problems of astrophysics and nuclear physics are also presented

    Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Full text link
    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of ββ\beta\beta decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124^{124}Cs.Comment: 9 pages, 9 figure

    Effect of the unpolarized spin state in spin-correlation measurement of two protons produced in the 12C(d,2He) reaction

    Get PDF
    In this note we discuss the effect of the unpolarized state in the spin-correlation measurement of the 1S0^1S_0 two-proton state produced in 12C(d,2He) reaction at the KVI, Groningen. We show that in the presence of the unpolarized state the maximal violation of the CHSH-Bell inequality is lower than the classical limit if the purity of the state is less than ∼70% \sim \verb+70%+. In particular, for the KVI experiment the violation of the CHSH-Bell inequality should be corrected by a factor ∼10%\sim\verb+10%+ from the pure 1S0^1S_0 state.Comment: 6 pages, to appear in J. Phys.

    Polarization Correlations of 1S0 Proton Pairs as Tests of Bell and Wigner Inequalities

    Full text link
    In an experiment designed to overcome the loophole of observer dependent reality and satisfying the counterfactuality condition, we measured polarization correlations of 1S0 proton pairs produced in 12C(d,2He) and 1H(d,He) reactions in one setting. The results of these measurements are used to test the Bell and Wigner inequalties against the predictions of quantum mechanics.Comment: 8 pages, 4 figure
    • …
    corecore